立志一年写一篇theoretical一篇applicational,从NIPS2026开始

application的话应该还来得及 :fuelpump:

rl发展到今天感觉能蹭上的好蹭的大家已经蹭完了 又开始emo自己生的太晚了
要是早生十年的话 天不生我ssinz7 万古如长夜 :troll:

survey无可厚非,本来就需要人来总结过去的工作给未来人做导航,问题是一个方向一两年survey一次够了,如果是迭代快的最多一年一次,你一个月survey一次就太水了…

actually I think之前RL有so many unresolved/ongoing problems that have been stopped due to

it’s good (or I want others :troll:) to resume
因为说白了现在还是卷算力base model (+ engineer/scientist experience) + somewhat elegant and small algorithm components for downstream tasks — everything just existed (but maybe with a fancier new name :yaoming:)

很难说survey和现在无穷无尽almost useless and so biased benchmarks孰好孰坏 :yaoming:

1 个赞

哪位网红老师啊?感觉现在的AP全在小红书上当网红

来蹭蹭大佬带,刚毕业统计PhD在养老厂摸鱼,人不帅写码快

Learning theory应该去stoc, colt, focs吧,蹭什么neurips啊

坑太少了,nips一年几千呢 :xieyan:

GPT 有 learning theory吗
这不就是experiment driven 好用了再来找个theory backup :troll:

一起加油,我也想冲菲尔兹。